
Basic RSpec Structure
>> describedescribe
describe accepts a string or class. It is used to organize specs.

describe UserUser dodo

endend

describe 'a user who has admin access' dodo

endend

>> itit
it is what describes the spec. It optionally takes a string.

describe UserUser dodo

it 'generates an authentication token when created' dodo

endend

it { }

endend

>> expect().toexpect().to
expect().to is RSpec’s assertion syntax.

describe ArrayArray dodo

it 'reports a length of zero without any values' dodo

expect([].length).to eq 0

endend

endend

>> expect().not_toexpect().not_to
expect().not_to is the inverse of expect().to.

describe ArrayArray, 'with items' dodo

it 'reports a length of anything other than zero' dodo

expect([1, 2, 3].length).not_to eq 0

endend

endend

Callbacks
>> beforebefore
before runs the specified block before each test. Often encourages bad tests.

describe UserUser, 'with friends' dodo

subject { UserUser.new }

before { subject.friends += [FriendFriend.new, FriendFriend.new] }

it 'counts friends' dodo

expect(subject.friends.length).to eq 2

endend

endend

>> afterafter
after runs the specified block after each test. Typically unnecessary.

describe ReportGeneratorReportGenerator, 'generating a PDF' dodo

after { ReportGeneratorReportGenerator.cleanup_generated_files }

it 'includes the correct data' dodo

expect(ReportGeneratorReportGenerator.generate_pdf([1, 2, 3]).points.length).to eq 3

endend

endend

>> aroundaround
around runs the specified code around each test. To execute the test, call run on the

block variable. Useful for class_attribute dependency injection.

describe ReportGeneratorReportGenerator, 'with a custom PDF builder' dodo

around dodo |example|

default_pdf_builder = ReportGeneratorReportGenerator.pdf_builder

ReportGeneratorReportGenerator.pdf_builder = PdfBuilderWithBorderPdfBuilderWithBorder.new('#000000')

example.run

ReportGeneratorReportGenerator.pdf_builder = default_pdf_builder

endend

it 'adds a border to the PDF' dodo

expect(ReportGeneratorReportGenerator.generate_pdf([]).border_color).to eq '#000000'

endend

endend

RSpec Cheatsheet

Copyright © 2013 - thoughtbot, inc. 1 of 3

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Things to Avoid in RSpec
>> itsits
its accepts a method (as a symbol) and a block, executing the method and performing

an assertion on the result.

describe UserUser, 'with admin access' dodo

subject { UserUser.create(admin: true, name: 'John Doe') }

its(:display_name) { should eq 'John Doe (admin)' }

endend

While this looks pretty nice, pay attention to the behavior: For each its, the subject is

mutating!

>> letlet
let lazily-evaluates a block and names it after the symbol. It often leads to “mystery

guest” and “general fixture”.

describe UserUser, 'with friends' dodo

let(:friends) { [FriendFriend.new, FriendFriend.new] }

subject { UserUser.with_friends(friends) }

it 'keeps track of friends correctly' dodo

expect(subject.friends).to eq friends

endend

endend

>> let!let!
let! behaves like let but is not lazily-evaluated (it runs regardless if the spec uses it).

describe UserUser, 'with admin access' dodo

let!(:friends) { [FriendFriend.new, FriendFriend.new] }

subject { UserUser.with_friends(friends) }

it 'keeps track of friends correctly' dodo

expect(subject.friends).to eq friends

endend

endend

This will explicitly set up data for each test; expensive operations will slow down the test

suite and this is never really necessary.

>> subjectsubject
subject helps signify what’s being tested but can lead to “mystery guest” or

encouraging other bad habits like before blocks.

describe UserUser, 'with admin access' dodo

subject { UserUser.create(admin: true, name: 'John Doe') }

it "displays its admin capabilities in its name" dodo

expect(subject.display_name).to eq 'John Doe (admin)'

endend

endend

describe UserUser, 'without admin access' dodo

subject { UserUser.create(admin: false, name: 'John Doe') }

it 'does not display its admin capabilities in its name' dodo

expect(subject.display_name).to eq 'John Doe'

endend

endend

RSpec Cheatsheet

Copyright © 2013 - thoughtbot, inc. 2 of 3

Alternative Solutions for
Things to Avoid
Inline Code in the Test
Here’s an alternate implementation to using subject and let (or before); we build

the list of friends and the user within the test, making it immediately obvious which

variables are used.

describe UserUser dodo

it 'keeps track of friends correctly' dodo

friends = [FriendFriend.new, FriendFriend.new]

user = UserUser.with_friends(friends)

expect(user.friends).to eq friends

endend

endend

Extract Helper Methods
Here’s an alternate implementation to using subject; we build the object instance

within the test, extracting a method which generates a user with the attributes assigned.

describe UserUser, '#display_name' dodo

it 'displays its admin capabilities in its name when an admin' dodo

user = build_user name: 'John Doe', admin: true

expect(user.display_name).to eq 'John Doe (admin)'

endend

it 'displays no additional data when not an admin' dodo

user = build_user name: 'John Doe', admin: false

expect(user.display_name).to eq 'John Doe'

endend

defdef build_userbuild_user(options)

UserUser.new(options)

endend

endend

Test Optimizations
Extract Complex Helper Methods
Define your own methods to use within the context of the describe block. Another way

to simplify tests by displaying intent with method names.

describe InvitationMailerInvitationMailer dodo

it 'delivers email from the sender to the receiver' dodo

deliver_email dodo |from_user, to_user|

expect(to_user).to have(1).email.from(from_user)

endend

endend

defdef deliver_emaildeliver_email

from_user = UserUser.new(email: 'sender@example.com')

to_user = UserUser.new(email: 'recipient@example.com')

InvitationMailerInvitationMailer.invitation(from_user, to_user).deliver

yieldyield from_user, to_user

endend

endend

RSpec Cheatsheet

Copyright © 2013 - thoughtbot, inc. 3 of 3

	Basic RSpec Structure
	describe
	it
	expect().to
	expect().not_to

	Callbacks
	before
	after
	around

	Things to Avoid in RSpec
	its
	let
	let!
	subject

	Alternative Solutions for Things to Avoid
	Inline Code in the Test
	Extract Helper Methods

	Test Optimizations
	Extract Complex Helper Methods

